THE CHINESE UNIVERSITY OF HONG KONG Department of Mathematics MATH2060B Mathematical Analysis II (Spring 2017) Tutorial 10

Tongou Yang

1. (Series of Numbers) Consider $\sum_{n=1}^{\infty}\left\{a_{n}\right\}$.
(a) State the definition and Cauchy criterion of convergence.
(b) Show that if $\sum_{n=1}^{\infty} a_{n}$ converges in \mathbb{R}, then in particular, $\lim _{n \rightarrow \infty} a_{n}=0$. Show that the converse does not hold.
(c) State the rearrangement theorem for a conditionally convergent series.
2. (a) State the comparison test.
(b) State the ratio test and root test. (In the tutorial the statement was not accurate)
Theorem 1 (Ratio Test). Let $\left\{a_{n}\right\}$ be nonzero and suppose the following limit exists:

$$
\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=L \in[0, \infty] .
$$

Then:
i. If $0 \leq L<1$, then $\sum_{n=1}^{\infty} a_{n}$ converges absolutely.
ii. If $1<L \leq \infty$, then $\sum_{n=1}^{\infty} a_{n}$ diverges.
iii. If $L=1$, then the test is inconclusive.

The statement regarding root test is similar:
Theorem 2 (Root Test). Let $\left\{a_{n}\right\}$ be nonzero and suppose the following limit exists:

$$
\lim _{n \rightarrow \infty}\left|a_{n}\right|^{\frac{1}{n}}=L \in[0, \infty] .
$$

Then:
i. If $0 \leq L<1$, then $\sum_{n=1}^{\infty} a_{n}$ converges absolutely.
ii. If $1<L \leq \infty$, then $\sum_{n=1}^{\infty} a_{n}$ diverges.
iii. If $L=1$, then the test is inconclusive.
(c) State the alternating series test.
(d) State the integral test.
(e) Use the definition and convergence (divergence) tests, study the convergence of the following series: if possible, study whether they are absolutely or conditionally convergent.
i. $\sum_{n=1}^{\infty} \frac{1}{n}$. This is called harmonic series.
ii. $\sum_{n=1}^{\infty} \frac{1}{n^{p}}, p \in \mathbb{R}$. This is called Riemann zeta function (on the positive real axis if $p>1$).
iii. $\sum_{n=3}^{\infty} \frac{1}{n(\ln (n))^{p}}$.
iv. $\sum_{n=1}^{\infty} \frac{(-1)^{n}}{n!}$.
v. $\sum_{n=10}^{\infty} \frac{(-1)^{n}}{\ln n}$.
vi. $\sum_{n=1}^{\infty} n!e^{-n}$.
vii. $\sum_{n=1}^{\infty} n!e^{-n^{2}}$.
viii. $\sum_{n=1}^{\infty} \frac{\sin n}{n^{2}}$.
ix. $0<a<1$ and $a^{2}+a+a^{4}+a^{3}+\ldots$. This example shows that root test is strictly stronger than ratio test in some sense.
(Not Discussed)
3. (a) Let $\left\{x_{n}\right\},\left\{y_{n}\right\}$ be given and let $s_{n}:=\sum_{k=1}^{n} y_{k}, s_{0}:=0$. Prove the summation by parts formula:

$$
\sum_{k=n+1}^{m} x_{k} y_{k}=\left(x_{m} s_{m}-x_{n+1} s_{n}\right)+\sum_{k=n+1}^{m-1}\left(x_{k}-x_{k+1}\right) s_{k}
$$

for $m>n$.
(b) Use summation by parts formula to prove the Kronecker's Lemma: Let

$$
\sum_{n=1}^{\infty} x_{n}=s \in \mathbb{R}
$$

Let $0<b_{1} \leq b_{2} \leq \cdots \leq b_{n} \rightarrow \infty$. Then

$$
\lim _{n \rightarrow \infty} \frac{1}{b_{n}} \sum_{k=1}^{n} b_{k} x_{k}=0
$$

Note in particular, we have

$$
\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{k=1}^{n} x_{k}=0
$$

(c) Use summation by parts formula to study the convergence of the series:

$$
\sum_{n=1}^{\infty} \frac{\cos \pi n}{n}
$$

Hint: Write $\cos (\pi n)=\operatorname{Re}\left(e^{i \pi n}\right)$.
4. (Just for fun) By formal algebraic manipulations, show that:
(a) $1-1+1-1+1-1+\cdots=\frac{1}{2}$.
(b) $1-2+3-4+5-6+\cdots=\frac{1}{4}$.
(c) $1+2+3+4+5+6+\cdots=-\frac{1}{12}$.

Warning: They all diverge in our definition! They make sense only if we generalise the definitions. Google for abelian and Tauberian's theorems.

